

CAPABILITY

STATEMENT

WORK THAT LASTS.

SPECIALIST CIVIL SOLUTIONS FOR WATER AND WASTEWATER NETWORKS

STRENGTH IN EVERY CONNECTION

SEE Group is a leading, family-built Australian civil construction and engineering business with proven capability in delivering complex, high-value water infrastructure projects across Queensland and New South Wales.

Our track record spans the planning, design, and delivery of large-scale water and wastewater networks including treatment facilities, pumping stations, rising mains, reticulation systems, and coastal and environmental water assets. From the wetlands of Cedar Grove to the urban corridors of Byron Bay and the coastal sands of Surfers Paradise, SEE Civil has delivered critical infrastructure in some of Australia's most technically challenging and environmentally sensitive settings.

Through our integrated civil and urban infrastructure services — supported by long-term partnerships with specialist contractors — we bring together the resources, engineering precision, and environmental management expertise required to deliver resilient, compliant, and sustainable water infrastructure.

ANOTHER SEE SOLUTION

WHY SEE GROUP

FULLY INTEGRATED DELIVERY MODEL

- ▶ End-to-end management and delivery of complex water infrastructure, including pumping stations, treatment plants, reservoirs, and pipeline networks through integrated civil, mechanical, and electrical disciplines.

PROVEN PERFORMANCE IN WATER AND WASTEWATER PROJECTS

- ▶ A consistent record of delivering major water and wastewater infrastructure under Construct Only, Capital Works AS4300, and Design & Construct contracts — achieving compliance, quality, and efficiency across every delivery framework.

COLLABORATIVE DELIVERY APPROACH

- ▶ We partner with councils, asset owners, and developers to optimise constructability, maintain compliance, and ensure seamless integration across D&C and ECI frameworks.

SAFETY, QUALITY AND ENVIRONMENTAL LEADERSHIP

- ▶ Proven record of meeting strict regulatory and discharge standards within live networks, high-traffic corridors, and environmentally sensitive sites. Our proactive safety systems and targeted environmental controls protect both people and place.

LOCAL OUTCOMES AND COMMUNITY BENEFITS

- ▶ Commitment to regional employment, training, and local supplier engagement, our projects consistently deliver tangible economic, environmental, and social value to the communities where we work.

ASSET RESILIENCE AND SUSTAINABILITY

- ▶ Focus on durable, low-maintenance solutions designed to optimise operational efficiency, enhance environmental outcomes, and ensure the long-term sustainability of water quality and infrastructure performance.

OUR CAPABILITIES

SEE Group delivers end-to-end civil construction solutions for water and wastewater infrastructure, combining technical expertise, environmental management, and operational integration to achieve reliable, long-term outcomes across urban, regional, and sensitive environmental settings.

WATER AND WASTEWATER TREATMENT INFRASTRUCTURE

Construction of new and upgraded water and wastewater treatment plants, including process structures, clarifiers, and chemical dosing facilities.

PUMPING STATIONS AND MECHANICAL INSTALLATIONS

Delivery of water, sewerage, and stormwater pumping facilities, including valve chambers, control panels, and emergency storage tanks.

PIPELINE CONSTRUCTION AND RETICULATION SYSTEMS

Installation of water, sewer, rising, and gravity mains, including under bores using open-trench and directional drilling methods. Expertise in all-diameter HDPE welding, QA testing, and compliance. Works include excavation, FRP and concrete chambers, pipe entries, hydraulic benching, and commissioning in confined environments.

RESERVOIRS AND WATER STORAGE STRUCTURES

Construction and rehabilitation of reservoirs, balance tanks, and associated valve chambers. Our focus on durability and performance ensures dependable water supply and long-term asset reliability.

DEWATERING, TREATMENT, AND COMMISSIONING

Implementation of temporary works, targeted dewatering systems, and staged commissioning to safely manage live networks, water-charged ground, and acid sulphate soils. These proven methodologies enable uninterrupted service and protect environmental integrity throughout delivery.

DESIGN AND CONSTRUCT EXPERTISE

Integrated D&C capability from early planning through to commissioning and handover. Our collaborative design approach aligns civil and specialist service providers to optimise constructability, whole-of-life value, and compliance.

OUR TECHNICAL STRENGTHS

MULTIDISCIPLINARY PROJECT DELIVERY

Integrated civil, structural, mechanical, and electrical expertise streamlines project delivery and reduces interface risk. This capability has been demonstrated across projects involving concurrent delivery of pumping, pipeline, and roadworks within live construction environments.

EXPERIENCE IN LIVE AND SENSITIVE ENVIRONMENTS

Our teams operate confidently within live treatment plants, wetlands, and high-traffic corridors, maintaining water quality, service continuity, and safety. We have successfully managed works adjacent to rivers, wetlands, and coastal environments while meeting strict operational and environmental standards.

COMPLIANCE AND QUALITY ASSURANCE

Every project is underpinned by comprehensive testing, commissioning, and certification aligned with Australian Standards and authority specifications. Our structured quality systems ensure all assets meet operational and performance requirements from start to finish.

ENVIRONMENTAL MANAGEMENT

We implement site-specific erosion, sediment, and water management systems, from acid sulphate soil treatment and groundwater control to sustainable wetland construction and water quality monitoring. These measures safeguard waterways, enhance ecosystems, promote responsible material reuse, and reduce the project's carbon footprint.

COLLABORATIVE DESIGN DEVELOPMENT

Through early contractor involvement and long-standing relationships with asset owners, consultants, and clients, we refine constructability, sequencing, and delivery risk. Our integrated design approach consistently enhances safety, buildability, and whole-of-life asset value.

ASSET PERFORMANCE AND LONGEVITY

SEE Group designs and constructs infrastructure for lasting performance, combining structural resilience, maintainability, and energy efficiency. From reinforced concrete reservoirs to engineered wetlands, our assets are built to perform reliably under changing environmental conditions and operational demands.

WASTEWATER TREATMENT PLANT

- ▶ CLIENT: LOGAN WATER INFRASTRUCTURE ALLIANCE
- ▶ LOCATION: CEDAR GROVE, QLD
- ▶ VALUE: \$4M
- ▶ CONTRACT: CONSTRUCT ONLY

PROJECT SUMMARY

SEE Civil delivered major civil works for the new Cedar Grove Wastewater Treatment Plant near Logan in South East Queensland. The award-winning project was constructed in a highly environmentally sensitive area adjacent to the Logan River and forms a key part of Logan Water's long-term growth strategy.

As part of our works, SEE Civil constructed eight hectares of engineered wetlands designed to naturally polish treated effluent before discharge. These wetlands have since become a thriving habitat for local birdlife and fauna, demonstrating how critical infrastructure and environmental enhancement can coexist.

SCOPE OF WORKS

SEE Civil's scope included civil earthworks, structures, and environmental construction works:

- 120,000 m³ of lime-stabilised bulk earthworks to form eight wetland cells.
- Incorporation of 5,000 t of agricultural lime within subgrade layers.
- Supply and installation of interconnecting pipework and concrete weirs between wetland cells.
- Placement of imported planting medium and establishment of native wetland vegetation.
- Construction of outlet pipework and splitter box directing treated effluent into treatment basins.
- Integration of wetland discharge with downstream release points into the Logan River.

ANOTHER SEE SOLUTION

CHALLENGES

1. ENVIRONMENTALLY SENSITIVE SETTING

Works were undertaken adjacent to the Logan River, requiring strict management of erosion, sediment, and water quality impacts.

2. MATERIAL CLASSIFICATION AND REUSE

The site's variable material types required careful excavation and classification to maximise reuse while maintaining engineering performance.

3. INTEGRATION WITH BIOLOGICAL TREATMENT SYSTEMS

Ensuring civil works aligned precisely with the operational requirements of the treatment process demanded close coordination with mechanical and process design teams.

SOLUTIONS AND DELIVERABLES

TARGETED MATERIAL MANAGEMENT

A site-specific methodology was developed to excavate, test, and separate materials into defined classes for reuse in subgrades, embankments, and treatment layers, minimising import requirements.

SUSTAINABLE WETLAND CONSTRUCTION

Custom lime-stabilisation and planting systems were applied to optimise pH levels and promote vegetation growth while maintaining structural stability.

ENVIRONMENTAL SAFEGUARDS

Comprehensive erosion and sediment controls, water quality monitoring, and staged construction sequencing protected the Logan River throughout the works.

COLLABORATIVE DESIGN INTEGRATION

Continuous coordination with process engineers and environmental consultants ensured seamless interface between civil, mechanical, and biological treatment systems.

OUTCOMES

- Delivery of critical wastewater infrastructure in a highly constrained environmental setting.
- Creation of eight hectares of functional wetlands providing long-term ecological and water-quality benefits.
- Compliance with all environmental and water discharge standards.
- Optimised material reuse, reducing waste and project footprint.
- Positive community and stakeholder recognition for environmental excellence.

PROJECT HIGHLIGHTS

- 120,000 m³ of stabilised earthworks delivering engineered wetland infrastructure.
- Eight hectares of constructed wetlands supporting new native habitats.
- Award-winning delivery demonstrating sustainable civil construction.
- Effective integration of civil, environmental, and process disciplines.
- Long-term asset contributing to water quality improvement in the Logan River catchment.

SAND BACKPASS PIPELINE

- ▶ CLIENT: CITY OF GOLD COAST
- ▶ LOCATION: SURFERS PARADISE, QLD
- ▶ VALUE: \$6.3M
- ▶ CONTRACT: CONSTRUCT ONLY

PROJECT SUMMARY

The Surfers Paradise Sand Backpass Pipeline is a key coastal resilience project designed to recycle and deliver natural sand from The Spit to Surfers Paradise, protecting the coastline against future storms and erosion. Delivered in two stages, the project involved 7.8 km of underground and temporary above-ground pipelines. Stage 2, spanning 5.8 km from the Sand Backpass Pumping Station to Narrowneck Beach, connected seamlessly with Stage 1 works.

SCOPE OF WORKS

SEE Civil delivered end-to-end construction services, including:

- Pre-construction documentation and site establishment with temporary fencing and contractor compound setup
- Dilapidation reporting and service location surveys
- Directional drilling, piling, structural and concrete works
- Excavation, trenching, roadworks, and asphalt reinstatement
- Setting out and levelling operations
- Traffic and pedestrian management, including public safety around parks, beaches, and 2.6 km of Seaworld Drive
- Testing and commissioning of all installations
- Decommissioning, demolition, removal, and disposal of existing structures

CHALLENGES

1. PUBLIC AND TRAFFIC SAFETY

Operations took place on busy roads and recreational areas, necessitating complex traffic and pedestrian management.

2. SENSITIVE COASTAL ENVIRONMENT

Works were conducted in sand and near public beaches, requiring careful management of erosion, access, and environmental impact.

3. INTEGRATION WITH EXISTING INFRASTRUCTURE

Demolition and addition to existing structures on operational sites required precision and minimised disruption.

4. STAKEHOLDER COORDINATION

Multiple stakeholders and local partners required careful scheduling and collaboration across stages.

SOLUTIONS AND DELIVERABLES

DIRECTIONAL DRILLING

Used strategically to minimise disturbance to critical coastal and built environments.

STAKEHOLDER ENGAGEMENT

Regular coordination with the City of Gold Coast, public authorities, and local businesses ensured smooth delivery.

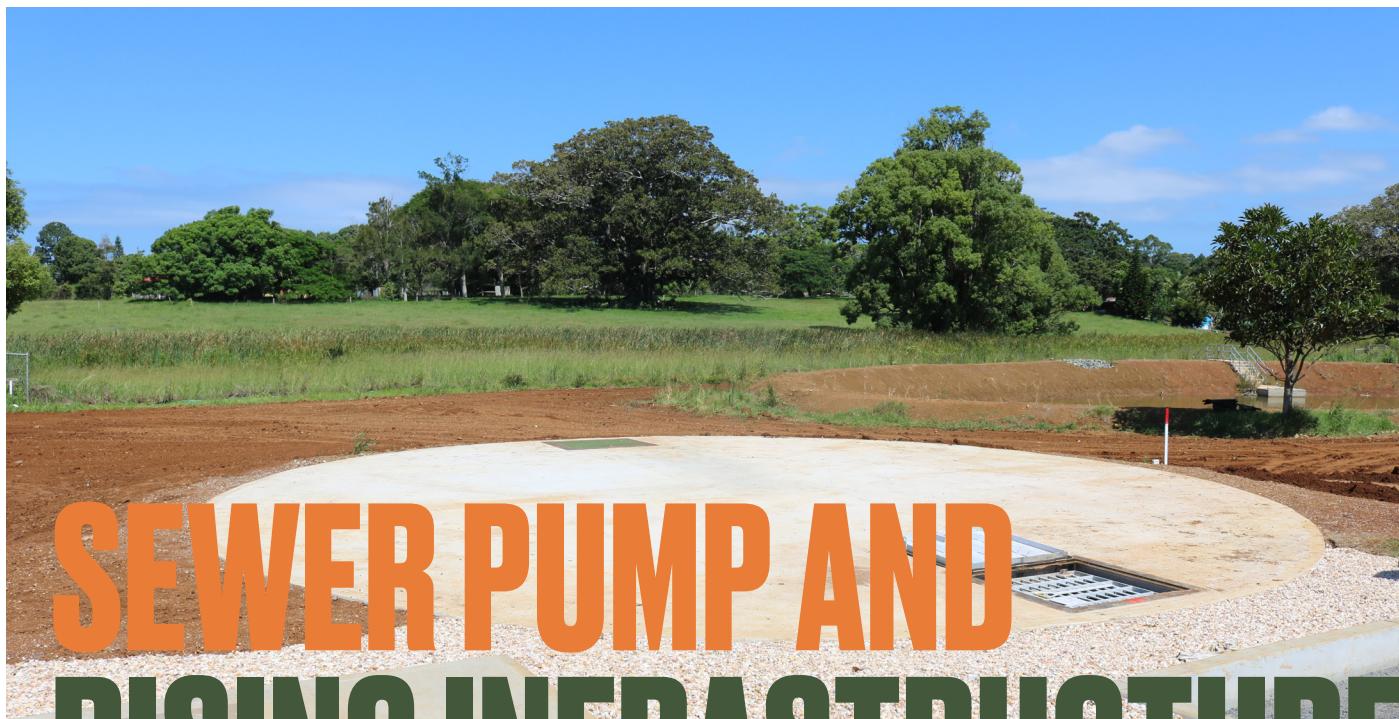
TRAFFIC AND PUBLIC MANAGEMENT

Comprehensive safety plans, signage, and monitoring enabled safe operations around high-traffic and public areas.

LOCAL WORKFORCE INTEGRATION

Labour and plant were sourced from local partners to support the community and streamline operations.

SAFETY INITIATIVES


Activity Start Cards, toolbox talks, leadership walks, and targeted safety inspections reinforced a strong safety culture.

OUTCOMES

- Delivery of 7.8 km of pipeline with minimal environmental and community impact, utilising 450mm and 225mm diameter pipes
- Successful integration with existing Stage 1 infrastructure
- Maintained safe operations in high-traffic and publicly accessible areas
- Strong engagement and participation of local workforce and contractors
- Enhanced coastal resilience through sand recycling and beach replenishment

PROJECT HIGHLIGHTS

- Multi-stage pipeline delivery connecting critical coastal infrastructure
- Directional drilling to minimise environmental impact
- Safe management of traffic and public across busy roads and recreational areas
- Effective collaboration with multiple stakeholders and local partners
- Implementation of robust safety initiatives across the project

SEWER PUMP AND RISING INFRASTRUCTURE

- ▶ CLIENT: BROOKFIELD
- ▶ LOCATION: BYRON BAY, NSW.
- ▶ VALUE: \$10.2M
- ▶ CONTRACT: CONSTRUCT ONLY

PROJECT SUMMARY

SEE Civil was engaged by Brookfield Multiplex and the New South Wales Department of Health to deliver two concurrent civil works packages for the construction of the new Byron Central Hospital. The project encompassed extensive site civil works and a new sewer pump station with twin rising mains connecting to the Byron Shire Sewerage Treatment Plant.

Delivered within a constrained urban corridor along Ewingsdale Road—the main entry route into Byron Bay—the project required careful coordination with hospital construction activities, strict environmental management through the Byron Wetlands, and complex traffic and utility interface management.

SCOPE OF WORKS

SEE Civil delivered end-to-end construction services, including:

- 3.2 km of twin rising mains (280 mm and 110 mm diameter welded HDPE pipe)
- Construction of a 3.2 m diameter x 8 m deep concrete sewer pump station with valve pits and control panels
- Cast in-situ 200,000 L concrete emergency storage tank.
- Three under bores beneath Ewingsdale Road (250 m+)
- Connection into the live Byron Council Sewerage Treatment Plant
- Roadworks including construction of a new concrete roundabout on Ewingsdale Road and full pavement rehabilitation

- Management of traffic on Ewingsdale Road, accommodating up to 20,000 vehicles daily
- Earthworks and civil works for the hospital site, including trenching in water-charged ground
- Environmental management in acid sulphate soils and Byron Wetlands
- Testing, commissioning, AS-CON survey, and preparation of operation manuals

CHALLENGES

1. ENVIRONMENTALLY SENSITIVE CONDITIONS

Works traversed wetlands and water-charged ground with acid sulphate soils requiring treatment and containment.

2. HIGH-TRAFFIC CORRIDOR

Construction along Ewingsdale Road demanded comprehensive traffic management for up to 20,000 vehicles per day.

3. UTILITY CONGESTION

Multiple live services (Telstra, power, optic fibre, stormwater, and water mains) required precise excavation and protection.

4. GROUNDWATER MANAGEMENT

Dewatering in confined zones adjacent to a high-volume roadway was essential to maintain safety and stability.

5. STRICT DELIVERY TIMEFRAMES

Works were sequenced to align with the hospital's critical construction milestones.

SOLUTIONS AND DELIVERABLES

TARGETED ENVIRONMENTAL MANAGEMENT

Acid sulphate soils were treated and neutralised onsite, and works were staged to minimise disturbance to the Byron Wetlands.

INNOVATIVE DEWATERING APPROACH

Custom dewatering systems allowed safe excavation in saturated ground while maintaining schedule and quality.

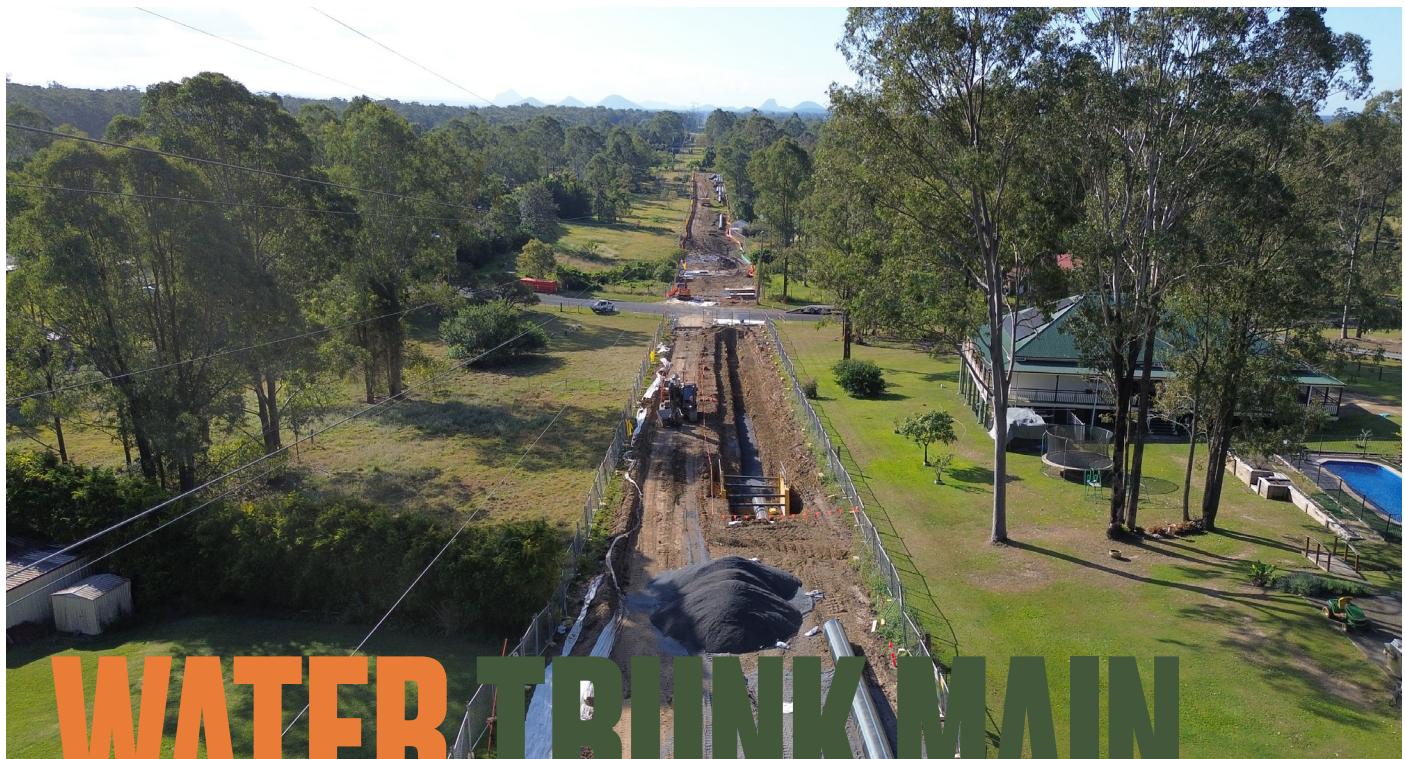
DIRECTIONAL UNDER BORING

Three under bores beneath Ewingsdale Road enabled major service crossings with minimal disruption to traffic.

COMPREHENSIVE STAKEHOLDER COORDINATION

Continuous engagement with Brookfield Multiplex, Byron Shire Council, and utility providers ensured safe, efficient progress across both work packages.

TRAFFIC AND PUBLIC INTERFACE MANAGEMENT


Detailed traffic control plans, night works, and real-time monitoring ensured minimal disruption along this critical corridor.

OUTCOMES

- Successful construction of a 3.2 km twin rising main and new sewer pump station integrated with the Byron Shire network
- Safe and timely delivery within a live hospital construction environment
- Effective mitigation of environmental risks and acid sulphate soil impacts
- Maintained full traffic flow on Ewingsdale Road with zero major incidents
- Enhanced regional infrastructure supporting essential healthcare facilities

PROJECT HIGHLIGHTS

- 3.2 km twin rising main installed through wetlands, roadways, and urban corridors
- Three 250 m+ under bores beneath Ewingsdale Road
- New 3.2 m x 8 m deep concrete pump station and 200,000 L emergency storage tanks
- High-traffic management for up to 20,000 vehicles per day
- Dewatering and acid sulphate soil treatment in saturated, sensitive ground conditions
- Integrated delivery across civil and utility works supporting the new Byron Central Hospital.

WATER TRUNK MAIN

- CLIENT: DOWNER
- LOCATION: PINE VALLEY, QLD
- VALUE: \$13.1M
- CONTRACT: CONSTRUCT ONLY

PROJECT SUMMARY

The project comprised the installation of approximately 5.1 km of PE100 PN16 watermain, ranging from 560 mm to 900 mm in diameter. Works included associated earthworks, scour and air valve installations, and full restoration of road and verge areas.

Delivery was undertaken through established residential areas and undulating terrain, requiring meticulous planning, detailed coordination, and innovative construction methods to manage access, logistics, and stakeholder impacts.

SCOPE OF WORKS

- 1,890 m of butt-welded OD560 PE100 PN16 watermain in existing road/verge, including full restoration
- 1,692 m of butt-welded OD560/800 PE100 PN16 watermain installed in a shared trench
- 1,517 m of butt-welded OD900 PE100 PN16 watermain
- 22 scour valves (900/800 & 560 mm diameters)
- 22 air valves (900/800 & 560 mm diameters)
- All associated works including traffic control, clearing, earthworks, and reinstatement

ANOTHER SEE SOLUTION

CHALLENGES

1. RESIDENT AND STAKEHOLDER LIAISON

Maintaining property access during trenching works across verges and driveways required close communication with residents and property owners. Temporary crossings, clear signage, and daily coordination helped minimise disruption.

2. DIFFICULT TERRAIN AND LIMITED ACCESS

The pipeline alignment traversed steep, undulating terrain, with restricted access via narrow tracks and temporary benching. Soft ground conditions and confined working widths created logistical challenges for material delivery and pipe stringing.

3. WORKING WITHIN EXISTING ROAD RESERVES

Installation within live verge and road corridors required stringent safety, traffic management, and restoration standards. Coordination with other underground services and council specifications added complexity to staging and sequencing.

4. MATERIAL HANDLING AND EQUIPMENT CONSTRAINTS

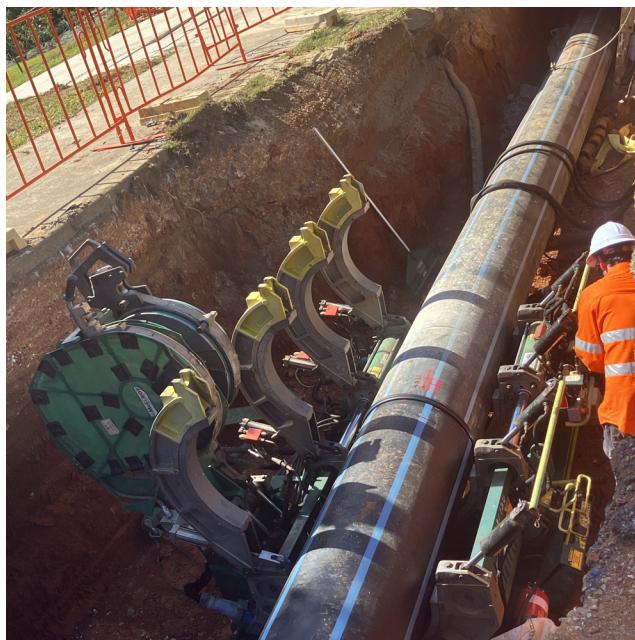
The 900 mm PE pipe sections required specialised handling techniques. Modified plant and a staged installation methodology were adopted to maintain productivity and safety in restricted work zones.

PROJECT HIGHLIGHTS

INNOVATIVE HANDLING SOLUTIONS

Custom-engineered equipment, including vacuum pipe lifts and a tractor-mounted system, enabled safe, efficient movement and placement of large-diameter pipe within constrained areas, reducing manual handling risks.

HIGH-QUALITY RESTORATION


All reinstatement and verge restoration works were completed to a high standard, reflecting the team's attention to detail and pride in workmanship.

COLLABORATIVE AND ADAPTIVE DELIVERY

Consistent communication between site supervisors, operators, and local residents underpinned smooth progress despite challenging access and terrain. The team adapted daily to maintain safe and efficient production rates.

SAFETY AND ENVIRONMENTAL PERFORMANCE

The project was delivered without incident, supported by robust environmental controls throughout trenching and reinstatement. The team's proactive approach to community engagement and site management upheld SEE Civil's strong safety and environmental reputation.

SEWER MAIN

- ▶ CLIENT: AVID, Stockland & Baycrown
- ▶ LOCATION: CABOOLTURE WEST
- ▶ VALUE: \$9.3M
- ▶ CONTRACT: CONSTRUCT ONLY

PROJECT SUMMARY

This project involved the installation of a 900 mm diameter gravity trunk sewer constructed from butt-welded PE100 pipe, incorporating deep poly-lined manholes up to 10 metres in depth. Forming a key component of the regional trunk sewer network, the works required precise grade control, robust safety systems, and careful coordination across all stages – from deep excavation and welding through to survey verification and backfilling.

SCOPE OF WORKS

- 2,116 m of butt-welded DN900 PE100 SDR17 gravity sewer main, installed up to 10 m deep
- 1,867 m installed via open-cut trenching
- 249 m installed using trenchless methods across two separate establishments
- 20 poly-lined 1,800 mm diameter manholes installed up to 10 m in depth

CHALLENGES

1. DEEP EXCAVATIONS (UP TO 10 M)

The installation involved significant excavation depths requiring engineered shoring systems, benching, and continuous dewatering to maintain stability and safety. Variable ground conditions further increased complexity during trench support, base preparation, and manhole installation.

2. SURVEY ACCURACY AND ALIGNMENT CONTROL

Maintaining strict grade and alignment tolerances was critical to the gravity system's performance. The team implemented detailed survey control procedures, frequent check surveys, and precision laser setups. Close communication between surveyors, pipelayers, and operators ensured consistent invert levels and alignment throughout.

3. PIPE WELDING AND HANDLING

The butt-welding process demanded precise temperature control, alignment accuracy, and strict sequencing. Welding, cooling, and lowering operations were carefully managed to prevent pipe stress and maintain consistent grades across the full alignment.

4. ACCESS AND SAFETY MANAGEMENT

Despite excavation depths, efficient access was achieved through a structured open-trench methodology. Defined access and egress points were established along the alignment to facilitate safe, coordinated movement of plant, personnel, and materials.

PROJECT HIGHLIGHTS

HIGH-PRECISION INSTALLATION

The sewer main was installed to exacting grade tolerances, achieved through disciplined coordination between the survey, supervision, and pipelaying teams.

SAFE AND SUCCESSFUL DEEP MANHOLE CONSTRUCTION

Multiple poly-lined manholes up to 10 metres deep were safely constructed using custom handrail systems, staged excavation techniques, and strict shoring compliance.

STRONG SAFETY AND QUALITY PERFORMANCE

All butt-welded joints passed QA inspection with zero rework. The project achieved a zero-incident record, reflecting disciplined site management and a strong safety culture.

EFFICIENT, HIGH-QUALITY DELIVERY

Adoption of open-trench methods enhanced efficiency and reduced manual handling requirements. The final works demonstrated SEE Civil's commitment to quality, precision, and professional delivery in technically demanding conditions.

CONSTRUCTING THE FUTURE ON THE STRENGTH OF OUR PAST

Daniel McMath

Business Development Manager
0450 584 747
Daniel.McMath@seecivil.com.au

Adam Batson

General Manager- Pre-Contracts
0400 115 565
Adam.Batson@seecivil.com.au

Contact Us

108 Siganto Dr,
Helensvale QLD 4212
(07) 5671 9601
info@seecivil.com.au

seegroup.com.au

